Controlled Pushing of Nanoparticles: Modeling and Experiments
نویسنده
چکیده
In this paper, a nano-robotic manipulation system using an atomic force microscope probe as the pushing manipulator and force and topology sensor is proposed. The task is the two-dimensional positioning of nanometer-size particles on a substrate in ambient conditions. Thus, the modeling of interaction forces and dynamics during the pushing operation is analyzed, and compared with the experimental results for an improved understanding of the nano scale physical phenomenon which is different from macro scale physics. Simulations and experiments are held for determining the conditions and strategies for reliable manipulation, and determining the affecting parameters. The results show that the latex particles with 242and 484-nm radii can be positioned on Si substrates successfully with around 30-nm accuracy, and the behavior of the particle motion during pushing can be predicted from the experimental data.
منابع مشابه
O1: Modeling of Mesenchymal Stem Cell-Derived Magnetite Nanoparticles for The Rehabilitation of Immune System Function and Reducing Inflammation and Promoting Myelination in the Treatment of MS Disease
By Using the modeling of the mesenchymal (bone marrow) stem cell nanoparticles, the reinstatement of the immune system leads to the treatment of MS, result in the formation of a new immune system for the body by stem cell. The presence of stem cells promotes and strengthens myelination, and that, using simulation and 3D modeling, stem cells can be transmitted correctly to the target and place o...
متن کاملUsing a Virtual Reality Environment to Simulate the Pushing of Cylindrical Nanoparticles
With the rise in the use of AFM (Atomic Force Microscope), we have witnessed a growing use of atomic microscope based nanorobots in the precise displacement of various particles. There are certain limitations to the application of nanorobots in the moving of nanoparticles. One of the most important of these limitations is the lack of an appropriate image feedback concurrent with the displaci...
متن کاملPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملDynamic Behavior and Simulation of Nanoparticle Sliding during Nanoprobe-based Positioning
In this paper, the behavior of nanoparticles, manipulated by an atomic force microscope nanoprobe, is investigated. Manipulation by pushing, pulling or picking nanoparticles can result in rolling, sliding, sticking, or rotation behavior. The dynamic simulation of the nanoparticle manipulation, using atomic force microscope (AFM), is performed. According to the dynamics of the system, the AFM pu...
متن کاملMathematical Modeling and Release Kinetics of Green Tea Polyphenols Released from Casein Nanoparticles
Drug release kinetics plays an important role in determining the mechanism of drug release, which in turn helps in formulating controlled/sustained release formulations.In our study, different concentrations of green tea polyphenols (GTP) were encapsulated into casein nanoparticles which showed a maximum encapsulation efficiency (76.9%) at a GTP concentration of 5 mg/mL. The casein nanopa...
متن کامل